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We propose a method of controlling nonlinear and chaotic systems which is able to synchronize the
phase space trajectory to a desired unstable orbit. The desired orbit could be an unstable periodic orbit
or a chaotic orbit. The method uses the procedure of adaptive control and introduces time dependent
changes in the system parameters. The changes in the parameter values depend on the deviations of the
variables of the system from the desired orbit and the deviations of the controlled parameters from their
values corresponding to the desired orbit. We illustrate our method using the Lorenz and Rossler sys-
tems. We also show that our method may be useful for communication purposes.

PACS number(s): 05.45.+b

I. INTRODUCTION

The existence of chaos in natural and man made sys-
tems is a well established fact. Recently, there has been
considerable interest in controlling chaotic and nonlinear
systems. Control of these systems is difficult because in
these systems the natural tendency of nearby trajectories
is to diverge exponentially in phase space, due to the sen-
sitive dependence on initial conditions. On occasions
chaos could be beneficial because it enhances the richness
of the dynamical behavior. Hence, in such situations the
interest may be in making the system follow a particular
chaotic trajectory or the trajectory of a coevolving chaot-
ic system. On the other hand, in some situations it is
desired that chaos be eliminated and the system follows a
time periodic trajectory. Different methods have been
proposed to achieve these goals [1-22].

Ott, Grebogi, and Yorke [1,2] have proposed a method
to convert the motion on a chaotic attractor to a desired
periodic motion. For the desired periodic motion they
choose a natural unstable periodic orbit of the system.
This choice of the desired orbit has several advantages
[1]. One waits for the trajectory of the system to come
sufficiently close to the desired one and then the desired
unstable periodic orbit is stabilized by making small time
dependent perturbations of some set of available system
parameters.

Pecora and Carroll [15,16] have shown that it is possi-
ble to synchronize two chaotic signals. They demonstrat-
ed that for a certain class of chaotic systems, two systems
can be synchronized by dividing them each into two sub-
systems, namely, a drive subsystem and a response sub-
system and keeping the variable values of the drive sub-
system the same for both of them. Synchronization is ob-
tained provided the subsystem Lyapunov exponents for
the response subsystem are all negative. It has also been
shown that [18] a dynamic feedback in the variable of the
drive subsystem can also achieve synchronization. A
possible application of synchronization of chaotic signals

for communication purposes was demonstrated recently
[23-25].
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An alternative approach to the problem of synchroni-
zation of two chaotic systems was demonstrated recently
by Lai and Grebogi [19]. The method is derived from the
Ott, Grebogi, and Yorke control algorithm [1,2] and
synchronization is achieved by introducing small pertur-
bations of the parameters. However, for the successful
implementation of this method one has to acquire a good
amount of knowledge about the underlying attractor, by
observing the system for a long time. Also, one must
wait for the two trajectories to come sufficiently close to
each other before perturbation can be applied.

Huberman and Lumer [20] introduced a simple adap-
tive control mechanism to control nonlinear systems. A
system which is perturbed away from its stable fixed
point value due to sudden deviations in parameter values
is brought back to the fixed point by introducing ap-
propriate changes in the parameter values. The method
has been shown to be successful in the case of stable limit
cycles also [21].

In this paper, we introduce a method for synchronizing
the evolution of a nonlinear and chaotic system to a
desired unstable trajectory through adaptive control.
The desired unstable trajectory could be a chaotic orbit
or an unstable periodic orbit. Our method is based on
the idea of adaptive control suggested by Huberman and
Lumer [20]. However, it should be noted that our
method is capable of stabilizing an unstable orbit while
the control suggested by Huberman and Lumer [20]
works only for stable orbits. We assume that one or more
of the system parameters are available for control and the
values of these parameters for the desired orbit are
known. The controlled parameters are changed depend-
ing on two factors; (1) the difference between the systems
output variables and the corresponding variables of the
desired orbit, and (2) the difference between the values of
the parameters which are controlled and their values for
the desired orbit. Since our approach is to introduce
changes in the available system parameters, all the vari-
ables of the system evolve freely. Also, a detailed
knowledge of the underlying attractor of the dynamics is
not necessary. This avoids the need to observe the sys-
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tem for a long time before it is controlled.

In the following sections we give a description of our
method of control (Sec. II) and demonstrate it using the
well known Lorenz and Rossler systems (Sec. III). We
also show that the method could be used for communica-
tion purposes (Sec. IV).

II. ADAPTIVE CONTROL FOR UNSTABLE ORBITS

We give a general description of our control procedure
for flows. Consider an autonomous n-dimensional system
evolving via the evolution equations

u=f(u,u), (1)

where uw=(u,,...,u,) and flu,p)=(f (u,u),...,
fn(u,u)) are n-dimensional vectors and the function f
depends on the set of parameters u=(u;, ..., ). The
values of the parameters u are such that the system is in
the chaotic regime. We assume that a set of parameters
u; are available for control. Let O(v) be the desired orbit
and is a natural unstable orbit of the system and v denote
the values of the variables of the desired orbit. The
desired orbit may be a chaotic trajectory of a coevolving
system or an unstable periodic orbit. Let the system gen-
erating the desired orbit be called the target system and
the controlled system be called the response system. Our
objective is to introduce a control mechanism for the sys-
tem of Eq. (1) so that the variable u of the response sys-
tem synchronize with the variables v of the target system.
Keeping this in mind we modify the evolution of the sys-
tem Eq. (1) by introducing small perturbations in the pa-
rameters u;;

u=f(u,u),
flup (2)

A —8g(p;—pi),

f;=—¢€h |(u;—v;),sgn d_#z

where u} is the value of the parameters u; corresponding
to the target system, € is the stiffness constant, 6 is the
damping constant, and u; denotes the variable in whose
evolution equation the parameter u; occurs. The func-
tion & is a continuous function of the difference (u; —v;)
and g is a continuous function of the difference (u; —u7).
The function sgn(x) denotes the sign of x. Parameters
other than u; are assumed to be constant and set at the
values of the target system. In our numerical examples
we take

fi af;
h |(u;—v;),sgn d_PT =sgn Ti_p_, (u;—v;), 3
glp—pf)=p;—pf . “@

Other forms of functions /4 and g are also possible.

In the absence of the control the system u will in gen-
eral show a chaotic behavior. With control we find that
the system is forced onto the desired orbit O (v) of the
target system, for certain ranges of values of the con-
stants € and 8. The range of values for which control is
possible is determined by studying the Lyapunov charac-
teristic exponents (LCE’s) of the evolution Egs. (2). The

condition for synchronization with the desired trajectory
is that all the LCE’s are negative. The critical values of
the stiffness constant and damping constant can be deter-
mined by the condition that the largest Lyapunov ex-
ponent be zero.

III. EXAMPLES

In this section we illustrate our control procedure us-
ing the Lorenz and Rossler systems.

A. Lorenz system

The Lorenz equations are given by [26]

x=—ox+toy,
y=rx—y—xz, (5)
z=—bz+xy .

We first consider the interesting case of synchroniza-
tion with a desired chaotic orbit. The desired orbit may
be predetermined or obtained from a coevolving system.
We take the control parameter to be r. The equations for
the parameter r is
dy

r —8(r—r*), (6)

F=—e€ly —y.)sgn

where y, is the y component of the desired chaotic orbit
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FIG. 1. The x variable of the target system and the response
system are shown for the case of synchronization of two Lorenz
systems evolving in the chaotic regime. The orbit generated by
the target system is shown by the thick line and the orbit of the
response system is shown by the dashed line. The target system
parameters are o* =10, r*=28, b*=2. The response system
has the same values for o and b. Control is applied for r with
stiffness constant €=50 and damping factor §=20. From the
figure it is clear that the response system synchronizes with the
target system within a short time and the two systems remain
synchronized thereafter.
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and r* is the value of r corresponding to it. The values
for the parameters ¢ and b remain the same as for the
desired orbit. Our numerical investigations show that it
is possible to synchronize the system with the desired
chaotic orbit even when the system is started consider-
ably away from the desired orbit.

Figure 1 shows the evolution of the x variable of the
controlled Lorenz system and the desired chaotic orbit.
The controlled system is started from a point away from
the desired orbit. We see that the controlled system syn-
chronizes with the desired chaotic orbit after some time.
In Fig. 2 we plot the deviations of all the variables x, y,
and z and the parameter r from the desired orbit values as
a function of time for the case in Fig. 1. We find that the
deviations decrease with time and the trajectory of the
system synchronizes with the desired orbit. Also the pa-
rameter 7 tends to the value r* of the desired orbit. Fig-
ure 3 shows the average transient time 7 as a function of
5, for a fixed value of €, where the average transient time

20

(a)

-104+

-20 1 1 1 1

40

(c)
20

- 20+

- 40 1 L Il 1

40

(d)
20}

Time

FIG. 2. The deviations Ax,Ay,Az of the three components of
the chaotic trajectory of the response system from the target
chaotic trajectory for the Lorenz systems of Fig. 1 shown as a
function of time in figures (a), (b), and (c), respectively. The
change Ar of the controlled parameter r from its value for the
target trajectory r* is shown in (d).
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FIG. 3. The average transient time is plotted as a function of
6 for €e=50 for synchronizing the trajectory of the response
Lorenz system with the chaotic orbit of the target Lorenz sys-
tem. The system parameters are 0*=10, r*=28, b*=2. The
accuracy to which convergence is checked is 1072 and the aver-
age was taken over 100 random initial conditions.

is obtained by considering the time taken for a trajectory
starting from a random initial point to synchronize to the
desired orbit within a given accuracy and averaging over
several such random initial conditions. We find that the
lower critical value of §=1.9 below which synchroniza-
tion is not possible. In Fig. 4 we plot the lower critical
value of § as a function of €. The critical value of 8 is ob-
tained by calculating the largest Lyapunov exponent [28]

FIG. 4. The lower critical value of § is plotted as a function
of € for synchronization of Lorenz system to a chaotic orbit.
The system parameters are o * =10, r*=28, b*=23. Only two
points are shown to indicate the error bar.
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of the controlled chaotic trajectory and requiring that the
largest Lyapunov exponent be zero at the critical value.

It is also possible to use the parameters ¢ and b for
controlling the Lorenz system.

Let us next consider controlling the Lorenz Eq. (5) to
focus the trajectory to an unstable periodic orbit. We il-
lustrate the control using the case of the simplest periodic
orbit, i.e., the fixed point. The Lorenz equations have
three fixed points, (0,0,0),[=Vb(r—1),=Vb(r—1),r
—1]. As an illustration consider the unstable fixed point
[Vb(r—1),V'b(r—1),r —1]. The equation for the pa-
rameter  is

F=—e€ly—y*)sgn —8(r—r*), (7

a
dr

where y* =V b*(r*—1). We write the Jacobian for Egs.
(5) and (7) as,

-0 O 0 0

r—z —1 —x x
J= y x —b 0 |- (8)

0 —e€ 0 -6

The condition for control or focusing the trajectory on
the fixed point is that the real part of all the eigenvalues
of the matrix [Eq. (8)] at the fixed point should be nega-
tive. From this condition one can get the range of values
of € and § for which control is possible. Figure 5 shows
the x-y projection of a trajectory of the Lorenz system
with control for . The system evolves from an arbitrary
initial condition away from the fixed point.
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FIG. 5. The figure shows the x-y projection of a trajectory of
the Lorenz system converging to the fixed point
x*=y*=vb(r—1),z*=r —1 starting from an initial value
away from the fixed point. Control is applied for the parameter
r. The system parameters are o*=10, r*=28, b*= 3. The
values of the constants are €=10 and §=10.
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B. Rossler System

The Rossler equations are given by [27],

X=—y—z,
y=x-+tay, 9)
z=b+z(x —c).

We have applied our control technique to synchronize
the trajectories of the Rossler system with desired chaotic
orbits. It is possible to apply our control method by in-
troducing changes in the parameter a. The equation for
parameter a is

dy

— %
da 8la —a*), (10)

a=—e(y —y.)sgn

where y, is the y component of the desired chaotic orbit
and the evolution of the x, y, and z variables remain the
same as in Eq. (9). Our numerical investigations showed
that it is possible to synchronize the system with a
desired chaotic orbit range of values for the constants e
and 8. Figure 6 shows the average transient time 7 as a
function of 8 for a particular value of €. The lower criti-
cal value of § is about 0.2. We again see that the average
transient time diverges to infinity as the value of 8 ap-
proaches the critical value.

We have also tried to control the system using other
parameters of the system. However, we find that it is not
possible to control the Rdssler system by using the pa-
rameters b and ¢. This is contrary to the Lorenz system
where control is possible using any of the three parame-
ters o, r, and b.

An analysis similar to that in the case of the Lorenz
system applied for controlling the system to the unstable
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FIG. 6. The figure shows the average transient time as a
function of 8 for the Réssler system for synchronization with a
chaotic orbit. The parameter values are a*=0.398, b*=2.0,
and ¢*=4.0 and the stiffness constant €= 10.
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fixed points. Again control is possible only with the pa-
rameter a.

IV. APPLICATION TO COMMUNICATION

Recently, it was shown that the combination of synch-
ronization and unpredictability from purely deterministic
systems leads to some potentially interesting communica-
tion applications [23]. Here we show that our method of
control could be used for communication purposes.

The transmitter and the receiver are systems with iden-
tical parameter ranges. A chaotic signal sent from the
transmitter is received by the receiver and is used to cal-
culate the perturbations of one of the parameters which
will ultimately synchronize the receiver with the
transmitter. In this process the controlled parameter also
gets synchronized with that of the transmitter. Now if
the parameter of the transmitter is modulated by some
signal, it will change the chaotic signal being sent. The
modulating signal could be deciphered from the con-
trolled parameter values at the receiver. Figure 7 shows
this process of communication for a binary signal using
the Lorenz system. The modulation of the transmitter
signal is done by varying the parameter r between the
values 28 and 28.5 corresponding to the binary 0 and 1
values of a square wave. The signal being transmitted is
the y variable of the Lorenz system. The receiver system
is controlled using parameter r with r*=28 [Eq. (6)].
The plot of the parameter r at the receiver clearly shows
a spike corresponding to a binary 1. The beginning of the
spike corresponds to the beginning of the binary 1 of the
transmitted signal, but the end of the binary 1 transmis-
sion could not be determined accurately. One is able to
decipher the message provided the time delay between
the spikes is well above the time required for synchroni-
zation within a specified accuracy.

V. DISCUSSION

We have shown that it is possible to control nonlinear
and chaotic systems by applying a control in a set of
available system parameters. A system parameter is per-
turbed depending on the deviation of a system variable
from the desired value and also on the deviation of the
parameter from its correct value corresponding to the
desired trajectory. The technique can be used to syn-
chronize the chaotic trajectory of a system to that of a
target system. The method could as well be used to con-
trol the system to an unstable fixed point or an unstable
periodic orbit. In our calculations, we have considered
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FIG. 7. The figure shows the process of communicating a
binary valued bit stream using adaptive control. The
transmitter and the receiver are two Lorenz systems. The sys-
tem parameters are 0*=10, r*=28, b*= %, €=100, and §=20.
A portion of the binary bit stream, which is modulating the pa-
rameter r of the transmitter is shown in (a) Ar denotes the
difference of r from r*. Each binary 1 state lasts for a time of
0.05 and each binary O state lasts for a time of 0.95. The varia-
tion of 7 in the receiver system is shown in (b). Corresponding
to each binary 1 in (a), there is a spike in (b).

those variables in whose equations the controlled parame-
ters appear. But this need not be a necessary condition
for control. In practice, it may be possible to use any of
the available variables [21].

We have also shown that it is possible to communicate
a binary message using our control method. The com-
munication method using the synchronization procedure
of Pecora and Carroll requires control of the variables of
the drive subsystem. On the other hand, our method uti-
lizes perturbations in system parameters. Thus, our
method should be useful when the parameters can be con-
trolled but not the variables.
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